【導(dǎo)讀】工業(yè)傳感器電源領(lǐng)域目前創(chuàng)新迭出,但也充滿挑戰(zhàn)。智能邊緣的實現(xiàn)需要智能數(shù)據(jù)方面的準(zhǔn)備。這就需要在電源方面進(jìn)行創(chuàng)新。在某些情況下,智能邊緣傳感器需要由單對雙絞線電纜供電,單對以太網(wǎng)供電(SPoE)解決方案可以滿足需要。在其他應(yīng)用中,納安級功耗解決方案有助于節(jié)省能源,從而在傳感器側(cè)實現(xiàn)更長的電池運行時間。此外,一些智能傳感器需要超低噪聲電源,以使傳感器數(shù)據(jù)不受影響。最后,在邊緣添加傳感器智能將需要使用功率密度更高的電源。這是因為,新傳感器需要適應(yīng)現(xiàn)有的外形尺寸。
工業(yè)傳感器電源領(lǐng)域目前創(chuàng)新迭出,但也充滿挑戰(zhàn)。智能邊緣的實現(xiàn)需要智能數(shù)據(jù)方面的準(zhǔn)備。這就需要在電源方面進(jìn)行創(chuàng)新。在某些情況下,智能邊緣傳感器需要由單對雙絞線電纜供電,單對以太網(wǎng)供電(SPoE)解決方案可以滿足需要。在其他應(yīng)用中,納安級功耗解決方案有助于節(jié)省能源,從而在傳感器側(cè)實現(xiàn)更長的電池運行時間。此外,一些智能傳感器需要超低噪聲電源,以使傳感器數(shù)據(jù)不受影響。最后,在邊緣添加傳感器智能將需要使用功率密度更高的電源。這是因為,新傳感器需要適應(yīng)現(xiàn)有的外形尺寸。
0 1 工業(yè)系統(tǒng)中的智能邊緣
工業(yè)系統(tǒng)中,智能邊緣可以 指 獨立選擇和處理數(shù)據(jù)的傳感器。傳感器和中央控制單元之間傳輸?shù)臄?shù)據(jù)量較少,因此數(shù)據(jù)傳輸?shù)碾y度較小。當(dāng)然,要處理傳感器提供的數(shù)據(jù),需要使用微控制器。一個簡單的例子是用于檢測特定信息的光學(xué)傳感器。例如,它可以檢測不小心踏入自動化制造區(qū)域、從而將自己置于危險之中的人員。處理圖像數(shù)據(jù)時,必須確保能夠準(zhǔn)確無誤地識別人員,以便快速做出響應(yīng),關(guān)停機(jī)器。這應(yīng)該有助于防止傷害。其目標(biāo)是在智能邊緣處理圖像數(shù)據(jù)。只有一個信號(即,在攝像頭視野中檢測到的人)被傳輸?shù)街醒胗嬎銠C(jī)。不再需要將圖像數(shù)據(jù)傳輸?shù)街醒胗嬎銠C(jī)。因此,需要的傳輸帶寬更低,傳輸也得以簡化。
0 2 智能邊緣是如何設(shè)計的?
通過在智能邊緣添加處理單元(微控制器),就可以創(chuàng)建智能傳感器。然而,該單元的電流消耗較高。為了提供傳感器所需的更高電流,我們需要新的供電概念。對于現(xiàn)有工業(yè)廠房和基礎(chǔ)設(shè)施來說,尤其如此。除了實現(xiàn)安全數(shù)據(jù)傳輸之外,解決方案還應(yīng)能夠輕松且安全地滿足更高電流需求。
0 3 使用現(xiàn)有2線電纜實現(xiàn)智能邊緣
SPoE可以通過2線電纜來用作電源,因此有助于實現(xiàn)智能邊緣。SPoE與以太網(wǎng)供電(PoE)類似,但可以使用現(xiàn)有2線電纜(例如4 mA至20 mA接口)來實現(xiàn)。SPoE可將高達(dá)52 W的功率傳輸400米的距離,或?qū)⒏哌_(dá)20 W的功率傳輸長達(dá)1千米的距離。SPoE在IEEE 802.3cg標(biāo)準(zhǔn)中作出了規(guī)定。線路的工作電壓為24 V或55 V。這種電源的特點是能量傳輸和數(shù)據(jù)傳輸可以在同一根2線電纜上進(jìn)行。數(shù)據(jù)通信基于10BASE-T1L標(biāo)準(zhǔn)。圖1顯示了SPoE通過一根長達(dá)1 km的2線電纜提供高達(dá)52 W的功率。
圖1. SPoE通過一根長達(dá)1 km的2線電纜提供高達(dá)52 W的功率。
0 4 工業(yè)環(huán)境中的納安級功耗傳感器
在智能邊緣的應(yīng)用場景中,工業(yè)環(huán)境中的低功耗傳感器的一個例子是振動傳感器,它們分布在加工廠中,用以監(jiān)測每臺機(jī)器。
記錄的振動對應(yīng)于不同的頻率,提供關(guān)于機(jī)械軸承和軸是否仍能可靠運行的指示。從中可以識別出老化的早期跡象。通過這種方式可以降低計劃外資產(chǎn)停機(jī)或超出特定運行容差的可能性。對振動的精密測量使得這種反應(yīng)成為可能。振動數(shù)據(jù)監(jiān)測需要復(fù)雜的算法來實時評估大量數(shù)據(jù)。數(shù)據(jù)處理可以在部署位置本地進(jìn)行,或在中央位置進(jìn)行。若采用集中評估,所有收集到的傳感器數(shù)據(jù)都必須通過電纜傳輸,或通過無線電波無線傳輸。
在許多應(yīng)用中,直接在傳感器上本地實施數(shù)據(jù)評估是有利的。對于這樣的實施方案,現(xiàn)有工業(yè)廠房可以簡單地配備振動傳感器,無需鋪設(shè)額外的電纜。如果傳感器檢測到超出容差的頻率范圍,它即會發(fā)出規(guī)定的警告信號。
此類傳感器可以通過磁吸方式固定到機(jī)器或設(shè)備上,并且通常形成網(wǎng)格網(wǎng)絡(luò),通過無線電波傳輸數(shù)據(jù)。在這種網(wǎng)格網(wǎng)絡(luò)中,各種傳感器相互通信,并傳輸有關(guān)哪個軸承顯示出明顯老化跡象的信息。因此,工業(yè)廠房可以輕松具備預(yù)測性維護(hù)能力。ADI的 OtoSense? 智能電機(jī)傳感器(SMS)技術(shù)就是其中的一個例子。它是一種基于人工智能技術(shù)的完整硬件和軟件解決方案,用于狀態(tài)監(jiān)控。ADI OtoSense SMS通過將先進(jìn)的檢測技術(shù)與領(lǐng)先的數(shù)據(jù)分析相結(jié)合來監(jiān)控電機(jī)狀況。
系統(tǒng)正常運行的一個重要先決條件是為傳感器提供適當(dāng)?shù)碾娫础U駝觽鞲衅鞑粌H必須為傳感器本身提供適當(dāng)?shù)碾娫?,還必須為用于評估數(shù)據(jù)的本地微處理器以及用于無線通信的RF模塊的操作提供適當(dāng)?shù)碾娫?。傳感器系統(tǒng)的設(shè)計有助于盡可能降低電流消耗。它可以使用電池作為能源,或者使用能量收集。這兩種技術(shù)經(jīng)常一起使用。增加能量收集功能可延長電池壽命,這樣就不必頻繁更換電池。能量收集可以使用多種能源。根據(jù)傳感器的位置,可以使用太陽能電池、熱電發(fā)電機(jī)(TEG)或壓電轉(zhuǎn)換器。特別是在工業(yè)生產(chǎn)設(shè)備中,通常存在可以通過TEG轉(zhuǎn)換為電能的溫度梯度。借助壓電傳感器,機(jī)械運動也可以轉(zhuǎn)換為電能。
對于通過電池和能量收集等方式供電的設(shè)備,優(yōu)化電壓轉(zhuǎn)換十分重要。高效率是關(guān)鍵。有幾種不同的納安級功耗管理集成電路適用于此目的。
圖2所示為采用MAX38650的電壓轉(zhuǎn)換電路示例。它是一款100 mA納安級功耗降壓開關(guān)穩(wěn)壓器。它可以在輸入側(cè)采用高達(dá)5.5 V的電 源電壓,并且可提供1.2 V至5 V之間的穩(wěn)壓輸出電壓。在運行期間,開關(guān)穩(wěn)壓器本身僅消耗390 nA的電流(典型值)。這是非常低的靜態(tài)電流。當(dāng)開關(guān)穩(wěn)壓器關(guān)斷時,其僅消耗5 nA電流。傳感器數(shù)據(jù)不是連續(xù)獲取的,僅在發(fā)生故障時才需要通信。這意味著MAX38650可以經(jīng)常切換到省電模式,以進(jìn)一步節(jié)省能源。
圖2. 用于電池供電傳感器的納安級功耗電壓轉(zhuǎn)換。
每個基本電壓轉(zhuǎn)換電路一般都有一個反饋引腳。為了提供穩(wěn)壓輸出電壓,需要一個簡單的電阻分壓器。然而,電阻分壓器在節(jié)能電路中沒有多大意義。根據(jù)具體電阻值,要么流經(jīng)分壓器的電流過高,導(dǎo)致高損耗,要么電阻值很高,以致反饋節(jié)點具有非常高的阻抗。結(jié)果,噪聲會耦合到反饋節(jié)點并直接影響所需電壓的調(diào)節(jié)。干擾在工業(yè)廠房中是一個尤其突出的問題。如圖2所示,MAX38650有一個RSEL引腳。它使用單個電阻工作,該電阻用于設(shè)置輸出電壓。當(dāng)MAX38650開啟時,200 μA的電流短暫流過該外部電阻。所得電壓用于設(shè)置電壓轉(zhuǎn)換器整個工作持續(xù)時間所需的輸出電壓。這是兩全其美的策略:工作期間的漏電流較低,輸出電壓可調(diào)且穩(wěn)健。
0 5 適用于超小信號電源
許多傳感器可以測量非常小的信號。為了防止這些信號失真,必須使用噪聲非常低的電源。傳導(dǎo)和輻射干擾源是主要噪聲源。借助開關(guān)模式電源開關(guān)穩(wěn)壓器的輸入側(cè)和輸出側(cè)的附加濾波器電路,可以大大減少傳導(dǎo)干擾,但對于輻射信號源而言,情況就沒那么簡單了。良好的電路板布局可以防范過多干擾輻射。即使如此,系統(tǒng)中仍然存在殘余噪聲耦合。只有通過良好的屏蔽(即金屬外殼)才能減少這種情況。然而,此類屏蔽的制造不僅耗時長,而且成本高。
采用Silent Switcher技術(shù)的開關(guān)穩(wěn)壓器提供了一種非常巧妙的解決方案,可以有效地減少輻射干擾。任何開關(guān)模式電源中出現(xiàn)的脈沖電流路徑都是對稱設(shè)計的,因此產(chǎn)生的磁場在很大程度上相互抵消。該技術(shù)與倒裝芯片技術(shù)相結(jié)合可以顯著減少輻射干擾,后者消除了開關(guān)穩(wěn)壓器IC中的鍵合線。
輻射干擾可減少多達(dá)40 dB。這相當(dāng)于輻射功率減少到原來的萬分之一。
圖3顯示了Silent Switcher技術(shù)的對稱設(shè)計,同時產(chǎn)生的局部脈沖電流以綠色顯示。脈沖電流產(chǎn)生不同極性的脈沖磁場,它們大部分相互抵消。
圖3. Silent Switcher技術(shù)大幅降低了輻射干擾。
Silent Switcher技術(shù)現(xiàn)已發(fā)展到第三代。在這一代產(chǎn)品中,超低噪聲線性穩(wěn)壓器還采用了特殊的超低噪聲技術(shù),以減少低頻范圍的干擾,特別是10 Hz至100 kHz之間的干擾。這一代Silent Switcher技術(shù)使得在許多應(yīng)用中可以省去開關(guān)模式電源開關(guān)穩(wěn)壓器和敏感負(fù)載之間的濾波線性穩(wěn)壓器。
0 6 僅使用一個電感的開關(guān)穩(wěn)壓器
有些傳感器需要放置在非常狹小的空間中,尤其是當(dāng)現(xiàn)有傳感器應(yīng)在同一位置替換為現(xiàn)代智能邊緣傳感器的時候。由于功能增強(qiáng),通常還需要更多的電氣元件。因此,必須找到減小物理尺寸的創(chuàng)新方法。
電壓轉(zhuǎn)換領(lǐng)域的一個有趣例子是單電感多輸出(SIMO)技術(shù),它支持使用單個電感生成多個不同的輸出電壓。該技術(shù)可以節(jié)省原本要由多個電感占用的電路板空間。
圖4顯示了提供兩個精密調(diào)節(jié)輸出電壓的簡單SIMO穩(wěn)壓器電路示例。額外的電源電壓可以輕松生成。僅需要一個電感L。
圖4. SIMO電源適用于超小型傳感器。
SIMO技術(shù)可以通過如下方式實現(xiàn):單個電感連續(xù)用于所有單獨的輸出電壓。一定量的能量被置于電感中,然后用于產(chǎn)生電壓VOUT1。之后,另一規(guī)定量的能量被置于電感中并用于產(chǎn)生電壓 VOUT2。通過這種方式,每個產(chǎn)生的電壓都正好獲得了保持其穩(wěn)定所需的能量。
0 7 工業(yè)傳感器需要適應(yīng)性強(qiáng)的電源
本文介紹的電源領(lǐng)域創(chuàng)新都展示了如何為現(xiàn)代工業(yè)傳感器提供理想供電解決方案。傳感器變得越來越智能。它們生成的數(shù)據(jù)已經(jīng)在智能邊緣本地進(jìn)行評估。越來越多的傳感器被用于工業(yè)廠房,以幫助優(yōu)化流程并盡可能地減少停機(jī)時間。為了跟上這一趨勢,有必要采用能量收集等創(chuàng)新的供電概念。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。
推薦閱讀: