中南覆鸥人力资源有限公司

你的位置:首頁 > 電源管理 > 正文

如何實(shí)現(xiàn)能夠同步控制兩個(gè)或更多步進(jìn)電機(jī)的遠(yuǎn)程主機(jī)系統(tǒng)?

發(fā)布時(shí)間:2023-09-15 來源:ADI 責(zé)任編輯:wenwei

【導(dǎo)讀】工業(yè)4.0為遠(yuǎn)距離實(shí)現(xiàn)邊緣智能帶來了曙光,而10BASE-T1L以太網(wǎng)的數(shù)據(jù)線供電(PoDL)功能、高數(shù)據(jù)傳輸速率以及與以太網(wǎng)協(xié)議兼容也為未來發(fā)展鋪平了道路。本文介紹如何在自動(dòng)化和工業(yè)場景中集成新的10BASE-T1L以太網(wǎng)物理層標(biāo)準(zhǔn),將控制器和用戶界面與端點(diǎn)(例如多個(gè)傳感器和執(zhí)行器)連接起來,所有器件均使用標(biāo)準(zhǔn)以太網(wǎng)接口進(jìn)行雙向通信。


10BASE-T1L是針對(duì)工業(yè)連接的物理層標(biāo)準(zhǔn)。它使用標(biāo)準(zhǔn)雙絞線電纜,數(shù)據(jù)速率高達(dá)10 Mbps,電力傳輸距離長達(dá)1000米。低延遲和PoDL功能有助于實(shí)現(xiàn)對(duì)傳感器或執(zhí)行器等器件的遠(yuǎn)程控制。本文介紹如何實(shí)現(xiàn)一個(gè)能夠同步控制兩個(gè)或更多步進(jìn)電機(jī)的遠(yuǎn)程主機(jī)系統(tǒng),借此展示遠(yuǎn)距離實(shí)時(shí)通信的能力。


系統(tǒng)概述


圖1是系統(tǒng)級(jí)應(yīng)用的示意圖。在主機(jī)端,由 ADIN1100 和 ADIN1200 以太網(wǎng)PHY負(fù)責(zé)管理標(biāo)準(zhǔn)鏈路和10BASE-T1L鏈路之間的轉(zhuǎn)換,而在遠(yuǎn)程端,控制器通過 ADIN1110 以太網(wǎng)MAC-PHY與鏈路接口,只需要一個(gè)SPI外設(shè)來交換數(shù)據(jù)和命令。準(zhǔn)確的同步運(yùn)動(dòng)控制利用Trinamic? TMC5160 步進(jìn)電機(jī)控制器和驅(qū)動(dòng)器來實(shí)現(xiàn),這些器件可生成六點(diǎn)斜坡用于定位,而無需在控制器上進(jìn)行任何計(jì)算。選擇這些元器件還能降低對(duì)微控制器所用外設(shè)、計(jì)算能力和代碼大小的要求,從而支持使用更廣泛的商用產(chǎn)品。此外,在不超過預(yù)定功耗限制的情況下,整個(gè)遠(yuǎn)程子系統(tǒng)可以直接由數(shù)據(jù)線供電;因此,只有媒介轉(zhuǎn)換器板需要提供本地電


1692179975283183.png

圖1.系統(tǒng)概覽。


系統(tǒng)硬件


該系統(tǒng)由四個(gè)不同的板組成:


●  EVAL-ADIN1100 板具有ADIN1200 10BASE-T/100BASE-T PHY,與ADIN1100 10BASE-T1L PHY搭配使用,可以將消息從一種物理標(biāo)準(zhǔn)轉(zhuǎn)換為另一種物理標(biāo)準(zhǔn)。它可以針對(duì)不同的工作模式進(jìn)行配置。本項(xiàng)目使用標(biāo)準(zhǔn)模式15(媒介轉(zhuǎn)換器)。EVAL-ADIN1100板還集成了微控制器,用于執(zhí)行媒介轉(zhuǎn)換所需的基本配置和讀取診斷信息。但是,它不能與發(fā)送和接收的消息交互;該板對(duì)通信完全透明。


●  EVAL-ADIN1110 是遠(yuǎn)程器件控制器的核心。ADIN1110 10BASE-T1L MAC-PHY通過10BASE-T1L鏈路接收數(shù)據(jù),并通過SPI接口將數(shù)據(jù)傳輸?shù)桨遢dCortex?-M4微控制器進(jìn)行處理。該板還提供與Arduino Uno兼容的接頭,可利用這些接頭安裝擴(kuò)展板以添加更多功能。


●  TMC5160擴(kuò)展板是一款基于Arduino擴(kuò)展板外形尺寸定制的開發(fā)板。單個(gè)擴(kuò)展板最多支持兩個(gè)TMC5160 SilentStepStick板,多個(gè)擴(kuò)展板可以堆疊在一起以增加可控電機(jī)的最大數(shù)量。所有驅(qū)動(dòng)器共享相同的SPI時(shí)鐘和數(shù)據(jù)信號(hào),但片選線保持獨(dú)立。這種配置支持兩種通信模式:如果片選線各自置為有效,則微控制器可以與單個(gè)控制器通信——例如配置運(yùn)動(dòng)參數(shù)。相反,如果同時(shí)將多條片選線置為有效,則所有選定的驅(qū)動(dòng)器同時(shí)接收相同的命令。后一種模式主要用于運(yùn)動(dòng)同步。該板還為StepStick提供了一些額外的輸入電容,以降低電機(jī)啟動(dòng)時(shí)的電流峰值,并使正常工作期間的電流曲線更加平滑。它允許使用PoDL為最多配有兩個(gè)NEMA17電機(jī)的整個(gè)系統(tǒng)供電(默認(rèn)設(shè)置下,24 V時(shí)的最大傳輸功率為12 W)。該板還支持使用螺絲端子來簡化與步進(jìn)電機(jī)的連接,使控制器的相位輸出更容易訪問。


●  兩個(gè)EVAL-ADIN11X0EBZ板用于向系統(tǒng)添加PoDL功能,其中一個(gè)板用于媒介轉(zhuǎn)換器,另一個(gè)用于EVAL-ADIN1110EBZ。該板是一個(gè)插件模塊,可以安裝在評(píng)估板的MDI原型接頭上,并且可以配置為通過數(shù)據(jù)線提供和接收電力。


14.jpg

圖2.裝配好的EVAL-ADIN1110、EVAL-ADIN11X0EBZ和TMC5160擴(kuò)展板。


軟件


軟件代碼可供下載: 利用10Base-T1L以太網(wǎng)進(jìn)行遠(yuǎn)程運(yùn)動(dòng)控制 - 代碼。

為了保持代碼的輕量化并有效減少通信開銷,沒有在數(shù)據(jù)鏈路層之上實(shí)現(xiàn)標(biāo)準(zhǔn)通信協(xié)議。所有消息都是通過預(yù)定義固定格式的以太網(wǎng)幀的有效載荷字段進(jìn)行交換。數(shù)據(jù)被組織成46字節(jié)的數(shù)據(jù)段,一個(gè)數(shù)據(jù)段由2字節(jié)的固定報(bào)頭和44字節(jié)的數(shù)據(jù)字段組成。報(bào)頭包括:一個(gè)8位器件類型字段,用于確定如何處理接收的數(shù)據(jù);以及一個(gè)8位器件ID字段,如果存在多個(gè)相同類型的器件,可以通過ID來選擇單個(gè)物理器件。


1692179951507076.png

圖3.通信協(xié)議格式。


主機(jī)接口采用Python編寫,以確保與Windows和Linux主機(jī)兼容。以太網(wǎng)通信通過Scapy模塊進(jìn)行管理,該模塊允許在堆棧的每一層(包括以太網(wǎng)數(shù)據(jù)鏈路)創(chuàng)建、發(fā)送、接收和操作數(shù)據(jù)包。協(xié)議中定義的每種器件都有一個(gè)相應(yīng)的類,其中包括用于存儲(chǔ)要交換的數(shù)據(jù)的屬性,以及一組可用于修改這些屬性而不必直接編輯變量的方法。例如,若要在運(yùn)動(dòng)控制器的速度模式下更改運(yùn)動(dòng)方向,可以使用已定義的方法"setDirectionCW()"和"setDirectionCCW()",而不必手動(dòng)為方向標(biāo)志賦值0或1。每個(gè)類還包括一個(gè)"packSegment()"方法,該方法根據(jù)所考慮的設(shè)備器件的預(yù)定義格式,以字節(jié)數(shù)組的形式打包并返回與受控器件對(duì)應(yīng)的數(shù)據(jù)段。


固件利用ChibiOS環(huán)境以C語言編寫,其中包括實(shí)時(shí)操作系統(tǒng)(RTOS)、硬件抽象層(HAL)、外設(shè)驅(qū)動(dòng)程序等工具,使代碼可以在相似的微控制器之間輕松移植。項(xiàng)目基于三個(gè)自定義模塊:


●  ADIN1110.c是驅(qū)動(dòng)程序,用于支持通過SPI接口與ADIN1110交換數(shù)據(jù)和命令。它包括用于從器件寄存器讀取和寫入數(shù)據(jù)的低級(jí)通信函數(shù),以及用于發(fā)送和接收以太網(wǎng)幀的高級(jí)函數(shù)。它還包括用于在10BASE-T1L收發(fā)器之間建立通信的函數(shù)。通知是否出現(xiàn)新幀的引腳在中斷時(shí)讀取,以盡量減少延遲。


●  TMC5160.c實(shí)現(xiàn)了控制TMC5160運(yùn)動(dòng)控制器所需的全部函數(shù),配置為以全功能運(yùn)動(dòng)控制器模式運(yùn)行。它實(shí)現(xiàn)了恒速和位置控制兩種模式,允許使用六點(diǎn)斜坡進(jìn)行平滑準(zhǔn)確的定位。與多個(gè)運(yùn)動(dòng)控制器的通信通過單條SPI總線和多條獨(dú)立的片選線實(shí)現(xiàn)。它還提供了一組函數(shù)和類型定義來簡化運(yùn)動(dòng)同步。


●  Devices.c是從T1L鏈路接收的數(shù)據(jù)與連接到控制器的物理器件之間的接口。它包括與主機(jī)接口中定義的結(jié)構(gòu)體類似的結(jié)構(gòu)體,并且具有在每次接收到帶有效數(shù)據(jù)的新幀時(shí)更新結(jié)構(gòu)體的函數(shù)。此模塊還用于確定每次更新結(jié)構(gòu)體時(shí)執(zhí)行哪些操作,例如,哪個(gè)物理運(yùn)動(dòng)控制器與在特定器件地址接收到的命令相關(guān)。


1692179935252570.png

圖4.固件流程圖。


系統(tǒng)亮點(diǎn)和驗(yàn)證


該項(xiàng)目旨在演示如何在自動(dòng)化和工業(yè)場景中集成新的10BASE-T1L以太網(wǎng)物理層標(biāo)準(zhǔn),將控制器和用戶界面與端點(diǎn)(例如多個(gè)傳感器和執(zhí)行器)連接起來。此應(yīng)用針對(duì)多個(gè)步進(jìn)電機(jī)的遠(yuǎn)程實(shí)時(shí)控制,廣泛用于工業(yè)中的低功耗自動(dòng)化任務(wù),但也可用于輕型機(jī)器人和數(shù)控機(jī)床,例如臺(tái)式3D打印機(jī)、臺(tái)式銑床和其他類型的笛卡爾繪圖儀。此外,它還能擴(kuò)展用于其他類型的執(zhí)行器和遠(yuǎn)程控制器件。與具有類似用途的現(xiàn)有接口相比,其主要優(yōu)點(diǎn)包括:


●  布線簡單,只需要一根雙絞線。由于支持通過數(shù)據(jù)線供電,低功耗器件(如傳感器)可以直接借助此連接供電,從而進(jìn)一步減少所需的布線和連接器數(shù)量,并降低整體系統(tǒng)的復(fù)雜性、成本和重量。


●  使用PoDL標(biāo)準(zhǔn)的電力傳輸方式,通過數(shù)據(jù)線上疊加的直流電壓為連接到網(wǎng)絡(luò)的設(shè)備供電。這種耦合只需要使用無源元件就可以實(shí)現(xiàn),接收端的電壓經(jīng)過濾波后,可以直接給器件或DC-DC轉(zhuǎn)換器供電,不需要整流。只要適當(dāng)確定用于此類耦合的元件大小,就可以實(shí)現(xiàn)一個(gè)高效率系統(tǒng)。本項(xiàng)目中使用評(píng)估板上安裝的標(biāo)準(zhǔn)元件,整體效率約為93%(采用24 V電源,總負(fù)載電流為200 mA)。然而,這一結(jié)果還有很大的改進(jìn)余地,事實(shí)上,大部分損耗是電源路徑上無源元件的電阻壓降造成的。


●  用途廣泛,既可用于最后一公里連接,也可用于端點(diǎn)連接。ADI 10BASE-T1L器件針對(duì)長達(dá)1.7公里的距離進(jìn)行了測試。它們還支持菊花鏈連接,這對(duì)系統(tǒng)復(fù)雜性的影響很小。例如,使用 ADIN2111 雙端口低復(fù)雜度交換芯片可以設(shè)計(jì)集成菊花鏈功能的器件,使鏈路也適用于端點(diǎn)網(wǎng)絡(luò)。


●  易于與已集成以太網(wǎng)控制器的現(xiàn)有設(shè)備連接,包括個(gè)人電腦和筆記本電腦。數(shù)據(jù)幀遵循以太網(wǎng)數(shù)據(jù)鏈路標(biāo)準(zhǔn),所有與以太網(wǎng)兼容的協(xié)議都可以在其之上實(shí)現(xiàn),因此只需要一個(gè)媒介轉(zhuǎn)換器作為橋接器與標(biāo)準(zhǔn)以太網(wǎng)鏈路連接。例如,本項(xiàng)目中使用的評(píng)估板EVAL-ADIN1100可用作透明媒介轉(zhuǎn)換器的參考設(shè)計(jì),它僅需要兩個(gè)以太網(wǎng)PHY和一個(gè)可選微控制器用于配置和調(diào)試。


●  高達(dá)10 Mbps的高數(shù)據(jù)速率,全雙工。此特性與菊花鏈拓?fù)洌ㄔ谄渖峡梢詫?shí)現(xiàn)基于工業(yè)以太網(wǎng)的協(xié)議)相結(jié)合,使其可用于需要確定性傳輸延遲的實(shí)時(shí)應(yīng)用。


●  根據(jù)應(yīng)用的安全性和穩(wěn)健性要求,收發(fā)器和媒介之間的隔離可以通過容性耦合或磁耦合實(shí)現(xiàn)。


我們對(duì)該系統(tǒng)進(jìn)行了多次測量以評(píng)估其性能。所有用于與ADIN1110收發(fā)器和TMC5160控制器通信的外設(shè),都配置為使用標(biāo)準(zhǔn)硬件配置可達(dá)到的最大可能速度。考慮到微控制器具有80 MHz系統(tǒng)時(shí)鐘,對(duì)于運(yùn)動(dòng)控制器和ADIN1110收發(fā)器,SPI外設(shè)的數(shù)據(jù)速率分別設(shè)置為2.5 MHz和20 MHz。對(duì)于TMC5160,通過調(diào)整微控制器時(shí)鐘配置并向IC提供外部時(shí)鐘信號(hào),SPI頻率可進(jìn)一步提高至8 MHz,而對(duì)于ADIN1110,數(shù)據(jù)手冊(cè)規(guī)定的上限值為25 MHz。


對(duì)延遲進(jìn)行評(píng)估,請(qǐng)求數(shù)據(jù)和收到應(yīng)答幀之間的總時(shí)間大約為4 ms(500個(gè)樣本的平均值,使用Wireshark協(xié)議分析儀計(jì)算數(shù)據(jù)請(qǐng)求和相應(yīng)應(yīng)答的時(shí)間戳之間的差值測得)。我們還進(jìn)行了其他評(píng)估,以確定系統(tǒng)的哪些部分是導(dǎo)致此延遲的原因。結(jié)果表明,主要原因是RTOS的延時(shí)函數(shù),其預(yù)留的最小延遲為1 ms,用于設(shè)置TMC5160的讀寫操作間隔,而所需的延遲約為幾十納秒。這可以通過定義基于定時(shí)器的其他延遲函數(shù)來改進(jìn),使延遲間隔可以更短。


導(dǎo)致延遲的第二個(gè)原因是用于接收幀的Scapy函數(shù),調(diào)用此函數(shù)后至少需要3 ms的設(shè)置時(shí)間。在實(shí)際應(yīng)用中,直接使用操作系統(tǒng)的網(wǎng)絡(luò)適配器驅(qū)動(dòng)程序來開發(fā)接口,而不借助Scapy等第三方工具也能有所改進(jìn)。然而,這樣做也有一些缺點(diǎn),包括會(huì)失去與不同操作系統(tǒng)的兼容性并增加代碼復(fù)雜度。


1692179913957070.png

圖5.電源路徑的簡化方案。


通過切換GPIO并使用示波器測量高電平周期,可測得微控制器上實(shí)現(xiàn)回調(diào)的準(zhǔn)確執(zhí)行時(shí)間。實(shí)測執(zhí)行時(shí)間包括讀取和解析接收到的幀以及向運(yùn)動(dòng)控制器發(fā)送命令的函數(shù)執(zhí)行時(shí)間。


1692179891431337.png

表1.實(shí)測執(zhí)行時(shí)間


第二組測量旨在評(píng)估使用PoDL為遠(yuǎn)程器件供電時(shí)傳輸路徑上的功率損耗。我們用設(shè)置為不同電流的電子負(fù)載代替運(yùn)動(dòng)控制器擴(kuò)展板進(jìn)行測試,從0.1 A到0.5 A,步長為100 mA,以確定哪些元件對(duì)功率損耗有較大影響,進(jìn)而確定如何改進(jìn)設(shè)計(jì)以實(shí)現(xiàn)更高的額定電流。


1692179876269831.png

表2.系統(tǒng)效率


1692179864117728.png

圖6.每個(gè)無源元件的功率損耗與電流的關(guān)系。


結(jié)果表明,橋式整流器和肖特基二極管D2是造成損耗的主要因素,兩者均用于極性反接保護(hù)。兩個(gè)元件可以用基于MOSFET晶體管和理想二極管控制器的類似電路代替,以獲得更高的效率,同時(shí)也不會(huì)失去上述保護(hù)能力。在較高電流下,用于輸入和輸出電源濾波的耦合電感的直流電阻占主導(dǎo)地位,因此為了提高電流能力,還需使用具有更高額定電流的類似電感。


結(jié)論


工業(yè)4.0正在推動(dòng)智能自動(dòng)化的發(fā)展。ADI Trinamic技術(shù)與ADIN1100、ADIN1110、10BASE-T1L收發(fā)器配合使用,有助于控制器對(duì)遠(yuǎn)至1700米的傳感器和執(zhí)行器實(shí)現(xiàn)遠(yuǎn)程控制,而無需邊緣供電。通過可靠的遠(yuǎn)程控制方法,可以輕松地在更遠(yuǎn)距離實(shí)時(shí)控制步進(jìn)電機(jī),而不必犧牲任何性能或速度。這些系統(tǒng)解決方案將助力工業(yè)轉(zhuǎn)型,有望進(jìn)一步縮短響應(yīng)時(shí)間,充分提高性能。



免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)聯(lián)系小編進(jìn)行處理。


推薦閱讀:


SiC功率半導(dǎo)體市場,如何才能成為頭部玩家?

相機(jī)和AI:工業(yè)機(jī)器視覺技術(shù)加速發(fā)展的雙引擎

上百萬顆電芯實(shí)時(shí)監(jiān)測管理,儲(chǔ)能系統(tǒng)的“大腦”BMS有何過人之處?

與博世對(duì)話消費(fèi)類MEMS傳感器市場和未來

如何在傳感器模塊最小化同時(shí)保證更高的電源效率?

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉

搜索| 宜昌市| 保定市| 郎溪县| 车致| 叶城县| 宜州市| 临沭县| 容城县| 武胜县| 五大连池市| 吉木萨尔县| 自贡市| 甘南县| 贡嘎县| 会宁县| 闵行区| 临沂市| 筠连县| 长宁县| 英德市| 泸定县| 永城市| 米易县| 鹰潭市| 江山市| 九台市| 连山| 桂阳县| 穆棱市| 师宗县| 凤阳县| 兰州市| 亳州市| 西吉县| 休宁县| 宝鸡市| 勃利县| 江陵县| 南开区| 天镇县|