【導(dǎo)讀】如今,以GaN和SiC為代表的第三代半導(dǎo)體技術(shù)風(fēng)頭正勁。與傳統(tǒng)的半導(dǎo)體材料相比,GaN和SiC禁帶寬度大、擊穿電場強(qiáng)度高、電子遷移率高、熱導(dǎo)電率大、介電常數(shù)小、抗輻射能力強(qiáng)……因此可實(shí)現(xiàn)更高的功率密度、更高的電壓驅(qū)動能力、更快的開關(guān)頻率、更高的效率、更佳的熱性能、更小的尺寸,在高溫、高頻、高功率、高輻射等功率電子應(yīng)用領(lǐng)域,不斷在向傳統(tǒng)的硅基IGBT和MOSFET器件發(fā)起強(qiáng)勁的沖擊。
在這個第三代半導(dǎo)體技術(shù)的熱潮之中,GaN相較于SiC,表現(xiàn)出了更高的成長性。根據(jù)Yole Development公司的預(yù)測,全球GaN功率器件市場規(guī)模將從2020年的4,600萬美元,快速攀升至2026年的11億美元,平均年復(fù)合成長率高達(dá)70%!
之所以會獲得如此高的加速度,從2020年起GaN器件向智能手機(jī)快速充電器市場的成功滲透,功不可沒。不過除此之外,GaN器件自身那些頗“招人喜歡”的特質(zhì),才是更根本的原因。
GaN的優(yōu)勢
由于特性的不同,GaN和SiC在功率電子領(lǐng)域有著明顯的應(yīng)用市場區(qū)隔:SiC器件可以提供高達(dá)1,200V的電壓等級,并具有高載流能力,因此在汽車和機(jī)車牽引逆變器、高功率太陽能發(fā)電站和大型三相電網(wǎng)轉(zhuǎn)換器等應(yīng)用上優(yōu)勢明顯;而GaN器件的電壓等級通常為600V左右,但具有更高的開關(guān)品質(zhì)、支持更高的開關(guān)頻率,可謂是10kW以下應(yīng)用的理想之選,因此應(yīng)用領(lǐng)域廣泛,涵蓋消費(fèi)電子、通信和工業(yè)交直流電源、電動汽車車載充電器、電源適配器、伺服驅(qū)動功率級等產(chǎn)品。
在10kW以下的市場,盡管SiC器件也有所涉獵,但是相較而言GaN在以下三個方面的優(yōu)勢更為突出。
首先,GaN FET采用的橫向結(jié)構(gòu)內(nèi)沒有PN結(jié),因此也就沒有體二極管和與其相關(guān)的反向恢復(fù)過程;而SiC FET中存在體二極管,開關(guān)時需要一個反向恢復(fù)過程,這就會帶來額外的反向恢復(fù)損耗和時間,影響開關(guān)的功耗和速度。換言之,在10kW以下的應(yīng)用中,GaN具有更出色的開關(guān)品質(zhì),可在更高開關(guān)頻率下工作,這也使得采用更小體積的外圍元件成為可能。
圖1:不同功率電子器件的應(yīng)用領(lǐng)域
(圖源:TI)
其次,SiC器件需要采用更為昂貴的襯底材料以及專用的制造工藝,這會提高其應(yīng)用的總體成本;而GaN器件可基于標(biāo)準(zhǔn)的Si襯底制成,其后繼的降本空間更大。綜合評估,GaN在總體擁有成本上,隨著時間的推移會更具優(yōu)勢。
圖2:不同F(xiàn)ET技術(shù)的成本變化趨勢
(圖源:TI)
再有,由于GaN器件的制造工藝與傳統(tǒng)的Si半導(dǎo)體工藝兼容性強(qiáng),這就使得在同一器件封裝中可以做更多的文章,比如???????????將驅(qū)動器和GaN FET集成在一起,以及增加其他更多功能,這無疑會對提升系統(tǒng)性能、優(yōu)化設(shè)計(jì)、降低系統(tǒng)成本大有裨益。
集成驅(qū)動器
傳統(tǒng)GaN器件應(yīng)用系統(tǒng)都是采用分立的GaN FET和驅(qū)動器IC組合而成的,這是因?yàn)镚aN FET和驅(qū)動器是采用不同工藝技術(shù)制造的,有的時候還需要選用不同供應(yīng)商的器件。但是這種分立的架構(gòu)在面對高壓擺率開關(guān)應(yīng)用時,就會遇到挑戰(zhàn),原因是不同器件封裝和器件之間互連的焊線和引線會帶來寄生電感,而這些寄生電感會導(dǎo)致開關(guān)損耗、振鈴和可靠性等多方面的問題。
想要消除這些由寄生電感帶來的問題,一個行之有效的解決方案就是:將GaN FET和驅(qū)動器集成在一個封裝內(nèi),以大地減少寄生電感。
圖3對GaN FET和驅(qū)動器分立封裝架構(gòu)和單一封裝的集方案進(jìn)行了比較,后者對于整個系統(tǒng)會帶來哪些性能方面的提升,我們下面會做進(jìn)一步的分析。
圖3:GaN FET和驅(qū)動器分立架構(gòu)(a)和集成封裝(b)方案的比較(圖源:TI)
共源電感
由于GaN FET的開關(guān)速率很高,這時共源電感這個寄生要素的影響就不得不考慮了。在圖3a中,Lcs就是共源電感,在傳統(tǒng)的TO-220分立封裝中,GaN FET的源和由焊線流至引線,汲取電流和柵極電流都從這里流過。當(dāng)包含焊線和封裝引線的共源電感高于10nH時,就會限制壓擺率,而較低的壓擺率意味著更長的轉(zhuǎn)換時間,進(jìn)而導(dǎo)致更高的交叉?zhèn)鲗?dǎo)損耗,增加總的開關(guān)損耗。
而如果采用圖3b中的集成式封裝,驅(qū)動器的接地直接焊接至GaN FET裸片的源極焊墊,大幅度地縮短了電源環(huán)路與柵極環(huán)路公用的共源電感路徑,使得GaN器件能夠以更高的電流壓擺率進(jìn)行開關(guān),降低開關(guān)損耗。
柵極環(huán)路電感
柵極環(huán)路電感包括柵極電感和驅(qū)動器接地電感,其對開關(guān)性能影響巨大。在GaN FET關(guān)閉時,柵極被一個電阻器下拉,這個電阻器阻值要足夠低,才不會在開關(guān)期間由于漏極被拉高而重新接通。這個電阻器與GaN器件的柵極電容和柵極環(huán)路電感組成了一個L-R-C槽路,當(dāng)柵極環(huán)路電感值較大時,其品質(zhì)因數(shù)Q會增加,產(chǎn)生更高的振鈴,從而顯著增加GaN FET柵極的應(yīng)力——要知道,F(xiàn)ET柵極上的過應(yīng)力會對可靠性產(chǎn)生不良影響。
柵極環(huán)路電感還會影響到關(guān)斷保持能力。當(dāng)?shù)凸芷骷臇艠O保持在關(guān)閉電壓而高管導(dǎo)通時,低管漏極電容將一個大電流傳送至柵極的保持環(huán)路中,這個電流會通過柵極環(huán)路電感將柵極VGS推上去,從而增加直通電流,而直通電流的提升會導(dǎo)致交叉?zhèn)鲗?dǎo)能量損耗的增加。而且你會發(fā)現(xiàn),當(dāng)柵極環(huán)路電感較高時,減少柵極應(yīng)力和增強(qiáng)器件關(guān)斷保持,兩者是很難兼得的。
GaN FET+驅(qū)動器的集成式封裝顯然是減少柵極環(huán)路電感的好辦法。從圖3中可以看出,分立架構(gòu)中(圖3a),柵極電感包括驅(qū)動器輸出焊線Ldrv_out、GaN柵極焊線Lg_gan和PCB跡線Lg_pcb,電感值通常從幾nH到10nH以上;而如果是集成式封裝(圖3b),則可以將柵極電感控制在1nH以下,這就為系統(tǒng)性能整體的優(yōu)化提供了保障。
保護(hù)功能支持
為了確保GaN FET安全可靠工作,保護(hù)功能必不可少。比如過溫保護(hù)可以在感測到溫度超過保護(hù)閾值時,將GaN FET關(guān)閉。當(dāng)GaN FET和驅(qū)動器被集成在一個封裝內(nèi)時,由于引線框架具有良好的導(dǎo)熱性,也就能夠確保兩者的溫度比較接近,使得過熱保護(hù)設(shè)計(jì)更簡捷高效。
對GaN進(jìn)行電流保護(hù)時,需要GaN器件與驅(qū)動器之間具有低電感連接,這是因?yàn)橐暂^大壓擺率進(jìn)行快速開關(guān)動作時,互連線路中額外的電感會導(dǎo)致振鈴,并需要較長的消隱時間來防止電流保護(hù)失效。而集成式封裝方案正好可以減少互連電感,讓電流保護(hù)電路在需要的時候盡可能快地做出反應(yīng)。
歸納一下,當(dāng)我們將GaN FET和驅(qū)動器集成在單一封裝中之后,可以消除共源電感,實(shí)現(xiàn)高電流壓擺率;也可以減少柵極環(huán)路電感,降低關(guān)閉過程中的柵極應(yīng)力并提升器件的關(guān)斷保持能力;同時,還有助于支持高效可靠的過熱和過流過壓等保護(hù)功能的實(shí)現(xiàn),可謂是一舉多得!
TI的GaN功率級
Texas Instruments(TI)的LMG341x系列GaN功率級器件,就是采用“GaN FET + 驅(qū)動器”這種集成化封裝,而且在其中還整合了豐富的保護(hù)功能,可讓開發(fā)者充分利用GaN器件的優(yōu)勢,實(shí)現(xiàn)更高功率密度和更高效率的功率電子應(yīng)用設(shè)計(jì)。
以該系列產(chǎn)品中的LMG341xR150為例,與傳統(tǒng)的硅MOSFET相比,其具有超低的輸入和輸出電容值,零反向恢復(fù)特性可將開關(guān)損耗降低80%,且實(shí)現(xiàn)了更低的EMI和開關(guān)節(jié)點(diǎn)振鈴,這些優(yōu)勢使其可作為圖騰柱PFC之類的高密度、高效率拓?fù)湓O(shè)計(jì)的理想解決方案。
圖4:LMG341xR150的系統(tǒng)框圖
(圖源:TI)
由于集成柵極驅(qū)動器,該器件實(shí)現(xiàn)了零共源電感,20ns的傳播延遲確保其在MHz級頻率下工作,在100V/ns開關(guān)條件下(用戶可在25V/ns至100V/ns間調(diào)節(jié)壓擺率)的Vds振鈴幾乎為零,因此LMG341xR150可以作為傳統(tǒng)共源共柵GaN和分立GaN FET架構(gòu)的替代產(chǎn)品,很大幅度地提高電源性能和可靠性,并大大簡化設(shè)計(jì)。
圖5:LMG341xR150在100V/ns時的開關(guān)性能
(圖源:TI)
LMG341xR150還提供了強(qiáng)大的保護(hù)功能,包括過流保護(hù)(響應(yīng)時間低于100ns,壓擺率抗擾性高于150V/ns)、瞬態(tài)過壓抗擾度、過熱保護(hù),以及針對所有電源軌的UVLO保護(hù),且可提供自監(jiān)控功能,這就省去外部保護(hù)組件,有助于簡化設(shè)計(jì)的復(fù)雜性,降低系統(tǒng)成本。
毋庸置疑。GaN技術(shù)的推廣和應(yīng)用,為功率電子產(chǎn)品的升級提供了巨大的推動力。不過,想讓GaN的優(yōu)勢特性充分發(fā)揮出來,除了在GaN器件本身的“雕琢”上精益求精,也需要充分考慮到整個電源系統(tǒng)的影響因素。事實(shí)證明,將驅(qū)動器和GaN FET集成在一個封裝中,就是從系統(tǒng)角度進(jìn)行優(yōu)化的一個行之有效的方案,可以在提升GaN電源系統(tǒng)性能的同時,也讓整個設(shè)計(jì)過程更快捷!
如果你在用分立式的GaN器件搭建方案時遇到瓶頸,不妨去嘗試一下LMG341xR150這種“GaN FET + 驅(qū)動器 + 保護(hù)功能”的集成式解決方案,一定會有不少“驚喜”等著你!
來源:貿(mào)澤電子
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。
推薦閱讀:
波反射——為何在RF設(shè)計(jì)中理解這個概念非常重要?
使用數(shù)字晶體管減少元器件數(shù)量:制作簡單電路的第一步