中南覆鸥人力资源有限公司

你的位置:首頁(yè) > 電源管理 > 正文

開發(fā)基于碳化硅的25 kW快速直流充電樁:方案概述

發(fā)布時(shí)間:2022-01-28 來(lái)源:安森美 Karol Rendek, Stefan Kosterec, Dionisis Voglitsis and Rachit Kumar 責(zé)任編輯:wenwei

【導(dǎo)讀】在本系列文章的第一部分中,[1]我們介紹了電動(dòng)車快速充電器的主要系統(tǒng)要求,概述了這種充電器開發(fā)過(guò)程的關(guān)鍵級(jí),并了解到安森美(onsemi)的應(yīng)用工程師團(tuán)隊(duì)正在開發(fā)所述的充電器?,F(xiàn)在,在第二部分中,我們將更深入研究設(shè)計(jì)的要點(diǎn),并介紹更多細(xì)節(jié)。特別是,我們將回顧可能的拓?fù)浣Y(jié)構(gòu),探討其優(yōu)點(diǎn)和權(quán)衡,并了解系統(tǒng)的骨干,包括一個(gè)半橋SiC MOSFET模塊。


正如我們所了解的,電動(dòng)車快速充電器通常含一個(gè)三相有源整流前端處理來(lái)自電網(wǎng)的AC-DC轉(zhuǎn)換并應(yīng)用功率因數(shù)校正(PFC),后接一個(gè)DC-DC級(jí)提供隔離并使輸出電壓適應(yīng)電動(dòng)車電池的需要(圖1)。


1640006899459725.png

圖1. 一個(gè)含多個(gè)功率級(jí)的大功率快速直流充電器(左)。電動(dòng)車快速直流充電系統(tǒng)的高級(jí)架構(gòu)(右)。


鑒于所提出的具挑戰(zhàn)的要求和當(dāng)前的市場(chǎng)趨勢(shì),系統(tǒng)工程團(tuán)隊(duì)考慮了幾個(gè)替代方案來(lái)實(shí)現(xiàn)這兩個(gè)轉(zhuǎn)換級(jí)。最后,結(jié)論是在AC-DC級(jí)利用6開關(guān)有源整流器,在依賴移相調(diào)制的DC-DC級(jí)利用雙有源橋(DAB)。這兩種架構(gòu)都支持雙向功能,并有助受益于1200-V SiC模塊技術(shù),1200-V SiC模塊技術(shù)是快速和超快直流充電器的基石。接下來(lái),我們將深入研究這兩個(gè)主要的功率級(jí)。


有源整流升壓級(jí)(PFC)


3相6開關(guān)有源整流級(jí)有助于實(shí)現(xiàn)0.99的功率因數(shù)和低于7%的總諧波失真,這些都是商用直流充電器系統(tǒng)的常見要求。與T-NPC或I-NPC等3級(jí)PFC拓?fù)浣Y(jié)構(gòu)相比,它提供了一個(gè)高效的雙向方案,而且元件數(shù)量少??偟膩?lái)說(shuō),這種兩級(jí)架構(gòu)在實(shí)現(xiàn)系統(tǒng)要求的同時(shí),也帶來(lái)了更勝一籌的性價(jià)比。[2]


直流鏈路將在800 V的高電壓下運(yùn)行,以減少峰值電流,從而最大化能效和功率密度(圖2)。為此,兩級(jí)架構(gòu)需要1200 V的VBD功率開關(guān)。


系統(tǒng)的開關(guān)頻率被設(shè)定為70 kHz,以保持二次諧波低于150 kHz,這使傳導(dǎo)輻射得到控制,并促進(jìn)符合EN 55011 A類(歐盟)和FCC Part 15 A類(美國(guó))規(guī)范(適用于連接到交流電網(wǎng)的系統(tǒng))。其中,這些規(guī)范對(duì)注入電網(wǎng)的傳導(dǎo)輻射程度設(shè)定了限值。這種方法簡(jiǎn)化了EMI濾波器的復(fù)雜性,使現(xiàn)成的方案成為適用的理想方案,從而達(dá)到本項(xiàng)目的目的。


26.jpg

圖2. 三相6開關(guān)拓?fù)浣Y(jié)構(gòu),帶有功率因數(shù)校正(PFC)的有源整流級(jí),也被稱為PFC級(jí)。


雙有源全橋(DC-DC)


DAB的DC-DC級(jí)將含兩個(gè)全橋、一個(gè)25千瓦的隔離變壓器和一個(gè)初級(jí)側(cè)的外部漏電感,以實(shí)現(xiàn)零電壓開關(guān)(ZVS)(圖3)。在單變壓器結(jié)構(gòu)中實(shí)現(xiàn)該轉(zhuǎn)換器有利于雙向運(yùn)行。此外,具有單變壓器的轉(zhuǎn)換器的對(duì)稱性有助于最大化功率開關(guān)的ZVS的工作范圍,從而實(shí)現(xiàn)高能效。


這解決了該項(xiàng)目面臨的一個(gè)重大挑戰(zhàn),最大化寬輸出電壓范圍(200 V至1000 V)的能效,使DC-DC的峰值目標(biāo)能效達(dá)98%。該轉(zhuǎn)換器的工作頻率為100 kHz,這是個(gè)折衷方案,以將開關(guān)損耗以及將磁性元件的磁芯和交流損耗保持在合理的水平。


此外,該系統(tǒng)將在變壓器上運(yùn)行磁通平衡控制,這種技術(shù)省去了在DAB移相結(jié)構(gòu)中與變壓器一起工作所需的笨重的串聯(lián)電容器。在這快速充電器轉(zhuǎn)換器中,給定50 A的高均方根(RMS)工作電流、幾百伏的必要額定電壓和十分之幾微法的估計(jì)電容值,這種電容將在嚴(yán)格的要求下運(yùn)行。以目前的現(xiàn)有技術(shù),所有這些要求將導(dǎo)致一個(gè)大尺寸的電容器。因此,磁通平衡控制策略有助于減小系統(tǒng)的尺寸、重量和成本。


總的來(lái)說(shuō),DAB DC-DC轉(zhuǎn)換器為電動(dòng)車快速充電器提供了一個(gè)全方位考慮的方案,它正在成為這新的快速充電器市場(chǎng)的一個(gè)典型方案。這種拓?fù)浣Y(jié)構(gòu)可以利用移相調(diào)制,在寬輸出電壓范圍提供高功率和能效。此外,開發(fā)人員可充分利用他們對(duì)傳統(tǒng)全橋移相ZVS轉(zhuǎn)換器的專知,因?yàn)檫@兩種系統(tǒng)之間有相似之處。


另一種方案是CLLC諧振轉(zhuǎn)換器,這是一種頻率調(diào)制拓?fù)浣Y(jié)構(gòu),在有限的輸出電壓范圍內(nèi)運(yùn)行時(shí),通常提供最高的轉(zhuǎn)換器峰值能效。這種轉(zhuǎn)換器是對(duì)LLC的改版,允許雙向工作。然而,控制、優(yōu)化和調(diào)整CLLC以實(shí)現(xiàn)雙向功能,并在較寬的輸出電壓范圍實(shí)現(xiàn)高輸出功率可能會(huì)變得很麻煩,需要結(jié)合頻率調(diào)制和脈沖寬度調(diào)制。


27.jpg

圖3. 雙有源橋(DAB)DC-DC級(jí)。該系統(tǒng)含有兩個(gè)全橋,中間有一個(gè)隔離變壓器。


工作電壓和功率模塊


AC-DC和DC-DC級(jí)之間的直流鏈路將在高壓(800 V)下運(yùn)行,以減少電流值,從而最大化能效和功率密度。輸出電壓將在200 V至1000 V之間擺動(dòng)(如前所述)。由于轉(zhuǎn)換器是基于兩級(jí)拓?fù)浣Y(jié)構(gòu),因此需要1200-V的擊穿電壓開關(guān)才能在這樣的電壓水平上運(yùn)行。


NXH010P120MNF1半橋SiC模塊(圖4)含1200 V、10 mΩ SiC MOSFET,是PFC級(jí)和DC-DC轉(zhuǎn)換器的骨干。該模塊具有超低RDS(ON),大大降低了導(dǎo)通損耗,且最小化的寄生電感降低開關(guān)損耗(與分立替代器件相比)。


28.jpg

圖4. NXH010P120MNF1 SiC模塊采用2-PACK半橋拓?fù)浣Y(jié)構(gòu)和1200-V、10-mΩ SiC MOSFET,用于實(shí)現(xiàn)AC-DC和DC-DC轉(zhuǎn)換器。


功率模塊封裝的卓越導(dǎo)熱性提高了功率密度(相對(duì)于分立SiC器件),減少了冷卻需求,并實(shí)現(xiàn)了小占位和強(qiáng)固的方案。SiC模塊成為一個(gè)重要元素,可在緊湊型和輕型系統(tǒng)的AC-DC和DC-DC級(jí)中分別實(shí)現(xiàn)>98%的能效。


此外,模塊賦能磁性元件縮減尺寸,適用于更高開關(guān)頻率,而減少的冷卻基礎(chǔ)架構(gòu)要求有利于降低整個(gè)系統(tǒng)的每瓦成本。在25千瓦的電動(dòng)車直流充電樁功率級(jí)中,在SiC模塊上使用基于風(fēng)扇的主動(dòng)冷卻,應(yīng)足以有效地減少系統(tǒng)中的損耗。電容器和磁性元件的選擇旨在最大限度地減少其冷卻要求,同時(shí)滿足技術(shù)規(guī)范。


控制模式和策略


數(shù)字控制將運(yùn)行系統(tǒng),依靠強(qiáng)大的通用控制板(UCB),[3]它采用Zynq-7000 SoC FPGA和基于ARM的芯片。這樣一個(gè)多功能的控制單元有助于測(cè)試和輕松運(yùn)行數(shù)字領(lǐng)域的多種控制方法——如單相移位、擴(kuò)相移位和雙相移位,以及DAB變壓器上的磁通平衡——并處理所有板載和外部通信。將使用兩個(gè)UCB單元,一個(gè)用于PFC級(jí),另一個(gè)用于DC-DC。


驅(qū)動(dòng)器


門極驅(qū)動(dòng)器對(duì)整個(gè)系統(tǒng)的性能和能效也至關(guān)重要。為了充分利用SiC技術(shù),必須高效地驅(qū)動(dòng)SiC MOSFET并確??焖俎D(zhuǎn)換。與硅基器件不同,SiC MOSFET通常工作在線性區(qū)域(而不是飽和狀態(tài))。在選擇適當(dāng)?shù)腣GS時(shí)需要考慮的一個(gè)重要方面是,與硅基器件不同,當(dāng)VGS增加時(shí),即使在相對(duì)較高的電壓下,SiC MOSFET也仍會(huì)表現(xiàn)出RDS(ON)的顯著改善。[4]


為了確保最低的RDS(ON),并大大減少導(dǎo)通損耗,建議導(dǎo)通時(shí)使用+20 V的VGS。對(duì)于關(guān)斷,建議使用-5 V,這樣可以減少“關(guān)斷”過(guò)渡期間的損耗,并提高魯棒性,防止意外導(dǎo)通。


此外,高驅(qū)動(dòng)電流是必要的,以實(shí)現(xiàn)適合SiC MOSFET的高dV/dt,這也有助于最小化開關(guān)損耗??紤]到這一點(diǎn),PFC和dc-dc級(jí)選用NCD57000 5-kV電隔離大電流驅(qū)動(dòng)器。


該單通道芯片確保了快速開關(guān)轉(zhuǎn)換,源/汲電流+4-A和-6-A,并耐用,顯示出高共模瞬態(tài)抗擾度(CMTI)。由于采用了分立式輸出,導(dǎo)通和關(guān)斷的門極電阻是獨(dú)立的(圖5),允許單獨(dú)優(yōu)化導(dǎo)通和關(guān)斷的dV/dt值并減少損耗。


1640006846718109.png

圖5. 帶有DESAT保護(hù)和分立輸出的隔離門極驅(qū)動(dòng)器的簡(jiǎn)化應(yīng)用原理圖。


此外,片上的DESAT功能對(duì)于確保SiC晶體管所需的快速過(guò)流保護(hù)非常有利,其特點(diǎn)是短路耐受時(shí)間比IGBT更短。下橋驅(qū)動(dòng)系統(tǒng)將復(fù)制上橋驅(qū)動(dòng)系統(tǒng),這是用于快速開關(guān)系統(tǒng)的高功率應(yīng)用中經(jīng)驗(yàn)證的好的做法。


隔離和電路的對(duì)稱性(上橋和下橋)有助于防止來(lái)自不同來(lái)源的問(wèn)題(EMI、噪聲、瞬態(tài)等),從而實(shí)現(xiàn)一個(gè)更強(qiáng)固的系統(tǒng)。+20-V和-5-V隔離偏置電源將由SECO-LVDCDC3064-SiC-GEVB提供,具有工業(yè)標(biāo)準(zhǔn)的引腳布局。


關(guān)鍵物料單


表1概述了將用于設(shè)計(jì)的關(guān)鍵半導(dǎo)體元件和功能塊。


表1. 25-kW電動(dòng)車直流充電樁中采用的關(guān)鍵半導(dǎo)體元器件

1640006823207521.png


整合一切


圖6顯示了上面介紹的所有系統(tǒng)器件如何在實(shí)際設(shè)計(jì)中組合在一起以提供一個(gè)完整的方案。圖7讓您很好地了解實(shí)際硬件的外觀。


PFC級(jí)位于DC-DC級(jí)的頂部,形成了一個(gè)緊湊而全面的結(jié)構(gòu)。這些模塊的整體尺寸加起來(lái)最大為380×345×(200至270)毫米(長(zhǎng)×寬×高),高度隨封裝的電感器件而異。最終,這些25千瓦的單元可以堆疊在一起,在一個(gè)超快速的電動(dòng)車直流充電樁中實(shí)現(xiàn)更高的功率水平。


后續(xù)部分簡(jiǎn)介


在本系列文章的后續(xù)部分,我們將進(jìn)一步詳細(xì)討論三相PFC級(jí)和DAB移相轉(zhuǎn)換器的開發(fā),包括仿真和其他系統(tǒng)考量。最后將展示測(cè)試結(jié)果。


31.jpg

圖6. 25 kW電動(dòng)車直流充電樁的高級(jí)框圖


32.jpg

圖7. 實(shí)際PFC(左)和dc-dc(右)級(jí)的3D模型。SiC模塊位于每個(gè)散熱器下面。在這些模型中,可以看到門極驅(qū)動(dòng)電源、通用控制器板(UCB)和無(wú)源塊。這些組件的其他視圖可以在以下在線視頻中看到。


33.png

掃描二維碼觀看視頻


參考文獻(xiàn)


1. “Developing A 25-kW SiC-Based Fast DC Charger (Part 1): The EV Application” by Oriol Filló, Karol Rendek, Stefan Kosterec, Daniel Pruna, Dionisis Voglitsis, Rachit Kumar and Ali Husain, How2Power Today, April 2021.

2. “Demystifying Three-Phase PFC Topologies” by Didier Balocco, How2Power Today, February 2021.

3. SECO-TE0716-GEVB product page.

4. ON Semiconductor Gen 1 1200 V SiC MOSFETs & Modules: Characteristics and Driving Recommendations,” application note AND90103/D.

5. NXH010P120MNF1: SiC Module product page.

6. NCD57000 product page. 

7. SECO-LVDCDC3064-SIC-GEVB product page.

8. NCD98011 product page.

9. NCID9211 product page.

10. NCS21xR product page.

11. SECO-HVDCDC1362-15W15V-GEVB product page.



免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)聯(lián)系小編進(jìn)行處理。


推薦閱讀:


為您揭秘下一代智能電表是如何工作的!

磁懸浮軸承——電力電子在高速旋轉(zhuǎn)機(jī)械領(lǐng)域的應(yīng)用

在當(dāng)今高壓半導(dǎo)體器件上執(zhí)行擊穿電壓和漏流測(cè)量

擔(dān)心柵極驅(qū)動(dòng)器的絕緣能力?采用'BIER'測(cè)試吧

談一談電源系統(tǒng)噪聲來(lái)源

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉

霍邱县| 林芝县| 神农架林区| 武宣县| 楚雄市| 峨眉山市| 隆子县| 泾阳县| 荔浦县| 阿拉善盟| 稷山县| 纳雍县| 扶绥县| 建德市| 惠水县| 双辽市| 合江县| 达孜县| 哈尔滨市| 大邑县| 山阴县| 连云港市| 永泰县| 休宁县| 海盐县| 封丘县| 汉寿县| 诸城市| 塔河县| 汾阳市| 广宗县| 江永县| 太保市| 贺州市| 寿阳县| 新疆| 桑植县| 伊宁县| 南汇区| 汽车| 化州市|