中南覆鸥人力资源有限公司

你的位置:首頁 > 互連技術(shù) > 正文

微帶線的相位補(bǔ)償電路物理模型分析

發(fā)布時(shí)間:2020-08-07 責(zé)任編輯:lina

【導(dǎo)讀】通過引入金絲鍵合線等效模型,建立微帶線旁邊增加片式電容并用金絲鍵合線互連后的相位補(bǔ)償電路物理模型。提取金絲鍵合線的并聯(lián)電容、串聯(lián)電感、串聯(lián)電阻等參數(shù),計(jì)算片式電容的容值參數(shù),推導(dǎo)相位補(bǔ)償電路物理模型的 ABCD 矩陣,并轉(zhuǎn)換為[S ]矩陣后,通過計(jì)算S21參數(shù)的角度值,即可得知片式電容對(duì)傳輸微波信號(hào)相位的影響。
  
摘要
 
通過引入金絲鍵合線等效模型,建立微帶線旁邊增加片式電容并用金絲鍵合線互連后的相位補(bǔ)償電路物理模型。提取金絲鍵合線的并聯(lián)電容、串聯(lián)電感、串聯(lián)電阻等參數(shù),計(jì)算片式電容的容值參數(shù),推導(dǎo)相位補(bǔ)償電路物理模型的 ABCD 矩陣,并轉(zhuǎn)換為[S ]矩陣后,通過計(jì)算S21參數(shù)的角度值,即可得知片式電容對(duì)傳輸微波信號(hào)相位的影響。同時(shí),通過仿真試驗(yàn),驗(yàn)證了該模型建立和推導(dǎo)的正確性。
 
引言
 
由于現(xiàn)在雷達(dá)系統(tǒng)復(fù)雜性的提高,雷達(dá)系統(tǒng)的回波信號(hào)經(jīng)過天線后,經(jīng)常需要多路接收通道同時(shí)傳送。但是通道間的固有差異,使得各路接收通道的信號(hào)輸出相位存在不一致性。為此,需要對(duì)相位進(jìn)行補(bǔ)償,以消除通道固有差異對(duì)相位的影響。
 
通常的相位補(bǔ)償方法是在微波電路中傳輸微波信號(hào)的微帶線側(cè)面增加一片覆銅層,該覆銅層作為一個(gè)片式電容與微帶線間用金絲鍵合線互連,以改變微波電路中傳輸微波信號(hào)的相位。但是該覆銅層尺寸和到微帶線距離對(duì)微波信號(hào)傳輸相位的影響都是由經(jīng)驗(yàn)獲得,再在電路中加以調(diào)試實(shí)現(xiàn)。
 
本文通過引入金絲鍵合線等效電路模型,理論推導(dǎo)片式電容經(jīng)金絲鍵合線接入微帶線后,對(duì)整個(gè)微波電路相位的影響,并建立仿真模型進(jìn)行驗(yàn)證。結(jié)果表明,理論推導(dǎo)與仿真結(jié)果相一致,為微波電路中相位補(bǔ)償調(diào)整提供了理論設(shè)計(jì)依據(jù)。
 
1  金絲鍵合線等效模型
1.1  等效模型
 
微帶線之間金絲鍵合線互連示意圖,如圖1所示。
 
微帶線的相位補(bǔ)償電路物理模型分析
圖1 金絲鍵合線互連結(jié)構(gòu)示意圖
 
基于微帶線的金絲鍵合線等效模型由與兩邊微帶線并聯(lián)的電容 C e 、串聯(lián)電感 L b 、串聯(lián)電阻 R b等組成,如圖 2 所示  。
 
 微帶線的相位補(bǔ)償電路物理模型分析
圖 2  金絲鍵合線等效模型
 
1.2  模型參數(shù)計(jì)算
 
對(duì)自由空間中長度為 l ,直徑為 d 的圓形金絲鍵合線,其電感 L b 可表示為
 
 微帶線的相位補(bǔ)償電路物理模型分析
 
式中:μ 0 為真空磁導(dǎo)率微帶線的相位補(bǔ)償電路物理模型分析;μ r?yàn)殒I合線的相對(duì)磁導(dǎo)率(對(duì)于金絲,μ r =1 );δ 為鍵合線的趨膚深度。
 
趨膚深度 δ 的表達(dá)式為
 
 微帶線的相位補(bǔ)償電路物理模型分析
 
式中:σ 為 鍵 合 線 的 電 導(dǎo) 率,對(duì) 于 金 絲, σ =微帶線的相位補(bǔ)償電路物理模型分析 ; f 為鍵合線傳輸信號(hào)的頻率。
 
串聯(lián)電阻 R b 的計(jì)算公式為
 
 微帶線的相位補(bǔ)償電路物理模型分析
 
式中:ρ 為金絲鍵合線的電阻率。
 
并聯(lián)電容 C e 表示為
 
 微帶線的相位補(bǔ)償電路物理模型分析
 
其中:
 
 微帶線的相位補(bǔ)償電路物理模型分析
 
式中:h 為微帶線基片厚度;W 為微帶線導(dǎo)帶的寬度;ε r 為基片的相對(duì)介電常數(shù)。
 
2  相位補(bǔ)償電路推導(dǎo)
 
基于微帶線的相位補(bǔ)償電路是由傳輸信號(hào)的微帶線 、微帶線旁的片式電容和金絲鍵合線組成,結(jié)構(gòu)示意圖如圖3所示,物理模型如圖4所示。
 
 微帶線的相位補(bǔ)償電路物理模型分析
圖 3  相位補(bǔ)償電路結(jié)構(gòu)示意圖
 
微帶線的相位補(bǔ)償電路物理模型分析
圖4  相位補(bǔ)償電路物理模型
 
在圖4中,θ 1 是信號(hào)輸入端至金絲鍵合處的微帶線的電長度,表示為微帶線的相位補(bǔ)償電路物理模型分析, λ g 是微波信號(hào)在微帶線上的傳輸波長,計(jì)算公式見式(6 )。同樣,θ 2 是金絲鍵合處至信號(hào)輸出端的微帶線的電長度。 Cp 為片式電容,其電容值計(jì)算公式表示為
 
 微帶線的相位補(bǔ)償電路物理模型分析
 
式中:ε 0 為 真 空 介 電 常 數(shù) ; A 為片式電容單極面積。
 
由金絲鍵合線和片式電容組成的并聯(lián)支節(jié),在電路中作為并聯(lián)導(dǎo)納,表示為
 
 微帶線的相位補(bǔ)償電路物理模型分析
 
其中:
 
 微帶線的相位補(bǔ)償電路物理模型分析
 
因此,圖4中從信號(hào)輸入至信號(hào)輸出級(jí)聯(lián)網(wǎng)絡(luò)的歸一化 ABCD矩陣如下表示  :
 
 微帶線的相位補(bǔ)償電路物理模型分析
 
式中:微帶線的相位補(bǔ)償電路物理模型分析, Y 0 為微帶線的特性導(dǎo)納。
 
 微帶線的相位補(bǔ)償電路物理模型分析
 
根據(jù)矩陣[ a ]至矩陣[ S ]的轉(zhuǎn)換公式(12)將式(11)轉(zhuǎn)化為矩陣[ S ],計(jì)算參數(shù) S21的角度值為微帶線的相位補(bǔ)償電路物理模型分析,即為引入片式電容后微波信號(hào)從輸入端傳至輸出端的相位延遲值。
 
在不引入片式電容的情況下,計(jì)算微波信號(hào)在相同微帶線上傳輸?shù)南辔谎舆t值為
 
 微帶線的相位補(bǔ)償電路物理模型分析
 
因此,計(jì)算微帶線的相位補(bǔ)償電路物理模型分析即為片式電容引入的相位補(bǔ)償值。
 
同理,當(dāng)一個(gè)片式電容不足以對(duì)所需相位進(jìn)行補(bǔ)償時(shí),可以引入兩個(gè)片式電容,其物理模型如圖5所示。
 
微帶線的相位補(bǔ)償電路物理模型分析
圖 5  兩個(gè)片式電容相位補(bǔ)償模型
 
計(jì)算其歸一化 ABCD矩陣為
 
 微帶線的相位補(bǔ)償電路物理模型分析
 
根據(jù)轉(zhuǎn)換式(12),將矩陣[aT2 ]轉(zhuǎn)換為矩陣[S],得出參數(shù) S21 的角度值,與微帶線本身的相位延遲作比較,算出相位補(bǔ)償值。
 
3  理論推導(dǎo)與仿真試驗(yàn)比對(duì)
通過建立仿真模型對(duì)理論推導(dǎo)進(jìn)行驗(yàn)證,仿真模型示意如圖6所示。圖中,微帶線基片厚度h=0.127mm ;相對(duì)介電常數(shù) ε r=2.2 ;特性阻抗Z0 =50Ω ;鍵合金絲長度 l=800 μ m ;直徑 d=25 μ m ;片式電容尺寸為0.3mm×0.3mm 。若工作頻率為20GHz ,微帶線總長度為3倍 λ/4 ,兩個(gè)片式電容間隔 λ /4 。
 
 微帶線的相位補(bǔ)償電路物理模型分析
圖6  相位補(bǔ)償仿真模型示意圖
 
由理論推導(dǎo)和仿真試驗(yàn)得出的輸入端與輸出端相位延遲比較如表1所示。從中看出,插入1個(gè)或2個(gè)片式電容時(shí),理論推導(dǎo)算得的相位補(bǔ)償分別為6.5° 、 13.1° ,仿真試驗(yàn)得出相位補(bǔ)償分別為6.8° 、 14.0° ,理論推導(dǎo)的數(shù)據(jù)與仿真試驗(yàn)的數(shù)據(jù)一致性很好。
 
表 1  理論推導(dǎo)和仿真試驗(yàn)數(shù)據(jù)比對(duì)
 
 微帶線的相位補(bǔ)償電路物理模型分析
 
通過進(jìn)一步的分析計(jì)算,可以得出以下結(jié)論:多個(gè)片式電容間隔無需滿足1/4波長要求;片式電容位置不能離微帶線太遠(yuǎn),否則過長的金絲鍵合線會(huì)增加鏈路的插損,特別在工作頻率提高后。
 
4  結(jié)論
 
本文通過引入金絲鍵合線等效模型,建立由微帶線旁邊增加片式電容并用金絲鍵合線互連后的物理模型,將該模型轉(zhuǎn)換為矩陣[S]后,計(jì)算增加片式電容對(duì)傳輸微波信號(hào)的相位影響。同時(shí),通過仿真試驗(yàn),驗(yàn)證了該模型建立和推導(dǎo)的正確性。因?yàn)榭梢苑奖愕卦谖Ь€旁邊增加片式電容,所以本文的分析對(duì)微波鏈路中靈活的相位補(bǔ)償具有參考作用。
 
 
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
 
 
推薦閱讀:
通科:追求產(chǎn)品品質(zhì),真誠對(duì)待客戶
維信諾:占據(jù)先發(fā)優(yōu)勢(shì)引領(lǐng)OLED產(chǎn)業(yè)發(fā)展
多重因素交織,從CITE 2020看中國集成電路如何“乘風(fēng)破浪”
采用不同的測(cè)量方法和連接方式對(duì)電阻進(jìn)行有效測(cè)量
如何選擇最適宜的電路保護(hù)器件,你知道嗎?
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉

台安县| 江津市| 张家口市| 鹤峰县| 枝江市| 婺源县| 伊金霍洛旗| 蓬安县| 惠东县| 清涧县| 芜湖市| 铜川市| 静安区| 泸水县| 邹平县| 名山县| 镇安县| 谢通门县| 泰州市| 鄂尔多斯市| 仁怀市| 定西市| 丁青县| 潼关县| 金乡县| 河东区| 体育| 修文县| 奎屯市| 牟定县| 扬中市| 稷山县| 齐河县| 台南市| 铜山县| 江陵县| 高台县| 易门县| 宝应县| 余江县| 高唐县|