【導讀】對貴重太陽能裝置及其電子設備的過電壓和過電流的可靠保護非常重要,且看TDK的愛普科斯耐高溫壓敏電阻如何給光伏逆變器提供保護。
太陽能裝置通常裝在屋頂?shù)葢敉馕恢?,也越來越多地裝在開闊地帶,因而過電壓帶來的風險極高,而太陽能組件與逆變器(直流電平)之間長長的引線以及接至電網(wǎng)(交流電平)的饋線則又加大了這一風險。下圖為典型太陽能逆變器的結構:將來自太陽能組件的直流電壓轉(zhuǎn)換成交流電壓,然后供給電網(wǎng)。
圖1:太陽能逆變器方框圖
左:太陽能組件與逆變器輸入端的過電壓保護(OVP)
右:對EMC濾波器及其它元件的線路側過電壓保護
在逆變器輸入端實現(xiàn)全面保護
額定電壓為1000 V DC的金屬氧化物壓敏電阻通常用于太陽能逆變器的直流輸入。根據(jù)待處理線路電壓,例如電壓為300 VRMS的壓敏電阻可以是變頻器輸出的首選。在這兩種情況下,也可使用充氣式氣體放電管以實現(xiàn)額外防護。圖2為太陽能逆變器直流輸入的常用電路設計:最簡化版本(圖2a)僅使用一個額定電壓為1000 VRMS的壓敏電阻(例如片狀,直徑20毫米)。在這種情況下,額定直流電壓為1414 V DC,而鉗位電壓在100 A時為2970 V。圖2b所示電路通過串聯(lián)的兩個壓敏電阻運作,兩元件應專用于550 VRMS (745 V DC),以提供相同保護。這一設計提供了一大優(yōu)點:鉗位電壓在電流為100 A時僅為2710 V,從而進一步抑制過電壓。此外,待吸收能量將平均分布于兩個組件,從而降低負荷系數(shù)。圖2c所示電路則在壓敏電阻與地面之間添加了一個氣體放電管。這一設計仍將提供充分保護,特別是當單個或兩個壓敏電阻出現(xiàn)故障或因負荷導致老化時。必須使用氣體放電管,以免當兩個壓敏電阻同時故障時進入持續(xù)導電狀態(tài)。
圖2:過電壓防護電路設計
原則上,電源線側提供相同電路方案。對于歐洲高達240 VRMS的典型電網(wǎng)電壓來說,應選擇額定電壓有300 或 320 VRMS的壓敏電阻。就本質(zhì)而言,由于標準電源的輸入電路專為線路運行設計,因此這些電路并沒有太多差別。
愛普科斯耐高溫壓敏電阻-SNF14和SNF20系列
產(chǎn)品性能:
硅樹脂包封;
最高浪涌電流為 12 KA;
低保護水平 340 V;
最高能量吸收 370 J;
高溫高濕耐受能力;
高溫度沖擊耐受能力.