中南覆鸥人力资源有限公司

你的位置:首頁 > 電源管理 > 正文

72 V混合式DC-DC轉(zhuǎn)換器使中間總線轉(zhuǎn)換器的尺寸減小達50%

發(fā)布時間:2018-03-20 來源:Bruce Haug 責(zé)任編輯:wenwei

【導(dǎo)讀】多數(shù)中間總線轉(zhuǎn)換器(IBC)通過大型變壓器實現(xiàn)從輸入端到輸出端的隔離。它們一般還需要一個電感用于輸出濾波。這類轉(zhuǎn)換器通常用于數(shù)據(jù)通信、電信以及醫(yī)療分布式供電架構(gòu)。這些IBC的供應(yīng)商數(shù)量眾多,通常采用行業(yè)標(biāo)準(zhǔn)1/16、1/8和1/4磚墻式封裝。
 
對于一個典型的IBC,其額定輸入電壓為48 V或54 V,輸出中間電壓范圍為5 V至12 V,輸出功率為幾百瓦特到數(shù)千瓦特不等。中間總線電 壓用作負載點調(diào)節(jié)器的輸入,負載點調(diào)節(jié)器則用于驅(qū)動FPGA、微處理器、ASIC、I/O和其他低壓下游器件。
 
然而,在許多新型應(yīng)用中,比如48 V直接轉(zhuǎn)換應(yīng)用,IBC中沒有必要進行隔離,因為上游48 V或54 V輸入已經(jīng)與危險的市電隔離。在許多應(yīng)用中,要使用非隔離IBC,就需要采用一個熱插拔前端器件。結(jié)果,許多新型應(yīng)用在設(shè)計時即集成了非隔離IBC,這樣不但可以大幅降低解決方案的尺寸和成本,同時還能提高轉(zhuǎn)換效率和設(shè)計靈活性。典型的分布式供電架構(gòu)如圖1所示。
 
72 V混合式DC-DC轉(zhuǎn)換器使中間總線轉(zhuǎn)換器的尺寸減小達50%
圖1. 典型分布式供電架構(gòu)。
 
既然有些分布式供電架構(gòu)支持非隔離轉(zhuǎn)換,我們就可以考慮在這種應(yīng)用中采用單級降壓轉(zhuǎn)換器。該轉(zhuǎn)換器的輸入電壓范圍為36 V至 72 V,輸出電壓范圍為5 V至12 V。來自ADI公司的LTC3891可以用于這種場合,當(dāng)工作于150 kHz的較低開關(guān)頻率時,其效率可達97%左右。當(dāng)LTC3891工作于較高頻率時,其效率會下降,因為當(dāng)輸入電壓為較高的48 V時MOSFET開關(guān)損耗將增加。
 
新方法
 
新的創(chuàng)新型控制器設(shè)計方法將一個開關(guān)電容轉(zhuǎn)換器與一個同步降壓轉(zhuǎn)換器結(jié)合起來。開關(guān)電容電路將輸入電壓降低2倍,然后饋入同步降壓轉(zhuǎn)換器。這種技術(shù)先將輸入電壓減小一半,然后降至目標(biāo)輸出電壓,支持高得多的開關(guān)頻率,因而能提高效率或大幅減小解決方案的尺寸。其他優(yōu)勢包括更低的開關(guān)損耗、更低的MOSFET電壓應(yīng)力,因為開關(guān)電容前端轉(zhuǎn)換器具有內(nèi)在的軟開關(guān)特性,可降低EMI。圖2所示為該組合是如何形成混合降壓同步控制器的。
 
72 V混合式DC-DC轉(zhuǎn)換器使中間總線轉(zhuǎn)換器的尺寸減小達50%
圖2. 一個開關(guān)電容和一個同步降壓轉(zhuǎn)換器組合成一個LTC7821混合轉(zhuǎn)換器。
 
新型高效率轉(zhuǎn)換器
 
LTC7821 將一個開關(guān)電容電路與一個同步降壓轉(zhuǎn)換器結(jié)合起來,與傳統(tǒng)降壓轉(zhuǎn)換器替代方案相比,最高可使DC-DC轉(zhuǎn)換器解決方案的尺寸減小50%。這一性能提升得益于其能夠在不影響效率的前提下將開關(guān)頻率提高至3倍。換句話說,在相同頻率下工作時,基于LTC7821的解決方案效率可提高3%。此外,該器件采用軟開關(guān)前端,具備低電磁干擾(EMI)優(yōu)勢,非常適合配電、數(shù)據(jù)通信和電信以及新興48 V汽車系統(tǒng)中的新一代非隔離式中間總線應(yīng)用。
 
LTC7821在10V至72V(絕對最大值為80 V)輸入電壓范圍內(nèi)工作,可產(chǎn)生數(shù)十安培的輸出電流,具體取決于外部元件的選擇。外部MOSFET的開關(guān)頻率是固定的,可在200 kHz至1.5 MHz范圍內(nèi)設(shè)定。在典型的48 V至12 V/20 A應(yīng)用中,LTC7821在500kHz開關(guān)頻率下的效率可達97%。若要在傳統(tǒng)的同步降壓轉(zhuǎn)換器中達到這一效率,唯一的辦法就是將工作頻率降低至三分之一,而這樣做就必須使用更大的磁性元件和輸出濾波元件。LTC7821配有強大的1 Ω N溝道MOSFET柵極驅(qū)動器,最大限度提高效率的同時可以并行驅(qū)動多個MOSFET以實現(xiàn)更高功率的應(yīng)用。此外,該器件采用電流模式控制架構(gòu),因此可將多個LTC7821以并行、多相配置運行,從而在無熱點的情況下,憑借出色的均流控制和低輸出電壓紋波支持高功率的應(yīng)用。
 
LTC7821實現(xiàn)了多項保護功能,在廣泛的各類應(yīng)用中均能保持強勁性能。基于LTC7821的設(shè)計還可在啟動時對電容進行預(yù)平衡,從而消除開關(guān)電容電路中經(jīng)常出現(xiàn)的浪涌電流。LTC7821還能監(jiān)視系統(tǒng)電壓、電流,和溫度故障并使用檢測電阻實現(xiàn)過流保護。發(fā)生故障時,它會停止開關(guān)操作并將FAULT引腳拉低。此外,可以使用板載定時器設(shè)置適當(dāng)?shù)闹貑?重試時間。LTC7821的EXTVCC引腳可接入轉(zhuǎn)換器的較低電壓輸出或其他可用電源(最高40 V)進行供電,從而降低功耗并提高效率。其他特性包括:整個溫度范圍內(nèi)±1%的輸出電壓精度;用于多相工作模式的時鐘輸出;電源良好輸出指示;短路保護;輸出電壓單調(diào)啟動;可選外部基準(zhǔn)電壓源;欠壓閉鎖;以及內(nèi)部電荷平衡電路。圖3為LTC7821在將36 V至72 V輸入轉(zhuǎn)換為12 V/20 A輸出時的原理圖。
 
72 V混合式DC-DC轉(zhuǎn)換器使中間總線轉(zhuǎn)換器的尺寸減小達50%
圖3. LTC7821原理圖(36VIN至72VIN/12V/20 A輸出)。
 
圖4所示效率曲線是三類不同轉(zhuǎn)換器在同一應(yīng)用中的表現(xiàn)對比,該應(yīng)用的作用是將48VIN轉(zhuǎn)換為12VOUT/20 A,具體如下:
 
    1.工作頻率為125 kHz的單級降壓,采用6 V柵極驅(qū)動電壓(藍色曲線)
    2.工作頻率為200 kHz的單級降壓,采用9 V柵極驅(qū)動電壓(紅色曲線)
    3.工作頻率為500 kHz的LTC7821混合式降壓同步控制器,采用6 V柵極驅(qū)動電壓(綠色曲線)
 
72 V混合式DC-DC轉(zhuǎn)換器使中間總線轉(zhuǎn)換器的尺寸減小達50%
圖4. 效率對比與變壓器尺寸縮減情況。
 
基于LTC7821的電路工作于最高為其他轉(zhuǎn)換器三倍的頻率時,其效率與其他解決方案相同。在此較高工作頻率下,電感尺寸可減小56%,整個解決方案的尺寸最多可減小50%。
 
電容預(yù)平衡
 
在施加輸入電壓時或者轉(zhuǎn)換器被使能時,開關(guān)電容轉(zhuǎn)換器通常會承受很高的浪涌電流,可能使電源損壞。LTC7821集成了一種專有機制,可在轉(zhuǎn)換器PWM信號被使能之前對所有開關(guān)電容進行預(yù)充電。從而將上電過程中的浪涌電流降至最低。另外,LTC7821還有一個可編程的故障保護窗口,可進一步確保功率轉(zhuǎn)換器的可靠工作。這些特性使輸出電壓實現(xiàn)平滑軟啟動,就如任何其他常規(guī)型電流模式降壓轉(zhuǎn)換器一樣。詳情請參考LTC7821數(shù)據(jù)手冊。
 
主控制環(huán)路
 
電容平衡階段一結(jié)束,正常工作立即開始。MOSFET的M1和M3在時鐘將RS鎖存器置位時開啟,在主電流比較器ICMP復(fù)位RS鎖存器復(fù)位時關(guān)閉。然后,MOSFET的M2和M4開啟。負責(zé)復(fù)位RS的ICMP處的電感峰值電流由ITH引腳上的電壓控制,該電壓是誤差放大器EA的輸出。VFB引腳接收電壓反饋信號,EA將該信號與內(nèi)部基準(zhǔn)電壓源進行比較。當(dāng)負載電流增加時,結(jié)果會導(dǎo)致VFB相對于0.8 V的基準(zhǔn)電壓源略微下降,結(jié)果又會導(dǎo)致ITH電壓增加,直到電感的平均電流與新的負載電流匹配為止。MOSFET的M1和M3關(guān)閉后,MOSFET的M2和M4開啟,直到下一個周期開始。在M1/M3和M2/M4切換過程中,電容CFLY將交替與CMID串聯(lián)或并聯(lián)。MID處的電壓約等于VIN/2??梢姡@種轉(zhuǎn)換器的工作方式與常規(guī)型電流模式降壓轉(zhuǎn)換器一樣,只是逐周期限流較快、較準(zhǔn)確且支持均流選項。
 
結(jié)論
 
在一個用于將輸入電壓減半的開關(guān)電容電路之后裝一個同步降壓轉(zhuǎn)換器(混合型轉(zhuǎn)換器),與傳統(tǒng)降壓轉(zhuǎn)換器替代方案相比,最高可使DC-DC轉(zhuǎn)換器解決方案的尺寸減小50%。這一性能提升得益于其能夠在不影響效率的前提下將開關(guān)頻率提高至3倍。也可以將轉(zhuǎn)換器的工作效率提高3%,此時其尺寸與現(xiàn)有解決方案相當(dāng)。這種新型混合式轉(zhuǎn)換器架構(gòu)還具有其他優(yōu)勢,包括有利于降低EMI和MOSFET應(yīng)力的軟開關(guān)特性。需要高功率時,可以輕松將多個轉(zhuǎn)換器并聯(lián)起來,實現(xiàn)有源精準(zhǔn)均流。
 
本文轉(zhuǎn)載自亞德諾半導(dǎo)體。
 
推薦閱讀:

為應(yīng)用選擇最合適的MEMS加速度計——第一部分
超前滯后零極點頻率補償器原理及應(yīng)用
晶體的串聯(lián)和并聯(lián)諧振
用模擬減法消除PWM DAC紋波
零頻率IF
要采購轉(zhuǎn)換器么,點這里了解一下價格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉

吴江市| 大关县| 苏尼特左旗| 永嘉县| 扬州市| 新余市| 澳门| 含山县| 武夷山市| 漯河市| 嘉定区| 昌吉市| 晋江市| 花莲市| 博兴县| 高阳县| 新邵县| 玉林市| 深泽县| 莆田市| 漳州市| 盘锦市| 栾川县| 颍上县| 杭锦旗| 兰西县| 安徽省| 金山区| 久治县| 定结县| 长寿区| 遂平县| 安阳市| 安西县| 南康市| 盐边县| 长沙市| 乌兰县| 横山县| 通许县| 茂名市|