中心議題:
- 結(jié)合使用放大器和檢測電阻
- 介紹一種簡單方案
- 密切關(guān)注先進的電流檢測放大器
解決方案:
- 凌力爾特科技公司的LTC6102可以直接實現(xiàn)高端電流檢測
絕大多數(shù)的模擬芯片(比較器、運算放大器、儀表放大器、基準(zhǔn)源和濾波器等)都是用來處理電壓信號的。當(dāng)用來處理電流信號時,設(shè)計師的選擇就較少了,且頭痛的事情也比較多。這是很不幸的,因為直接監(jiān)控和測量電流具有很大的優(yōu)點。對于電機力矩、螺線管力、LED亮度、太陽能電池光照以及電池能量等參數(shù),通過觀測電流是最好的監(jiān)控方式。因此需要一個能夠精密地檢測電流并將該電流轉(zhuǎn)換成易于常見的電壓型器件(放大器、比較器和ADC等)進行放大、調(diào)節(jié)和測量的電壓的電路。
盡管一只電阻就可以將電流轉(zhuǎn)換成電壓,但電阻自身卻無法提供完整方案。最常用的方案是采用一只檢測電阻,將該電阻直接串聯(lián)在電流通道中,再用一個放大器來隔離并調(diào)節(jié)電阻上的電壓(VSENSE)。
圖1:電流檢測電路的原理。
圖2:實際的電流檢測電路。
結(jié)合使用放大器和檢測電阻
乍看起來,將一只電阻器與地串聯(lián)起來似乎與最直接的電流檢測方案很相似。這種技術(shù)就是眾所周知的低端電流檢測(圖3A),該技術(shù)要求沒有接地路徑存在,因為接地路徑會對檢測電阻器周邊的電流分流,或者說會使相鄰電路貢獻電流。特別是當(dāng)機械外殼是系統(tǒng)地的話,要串聯(lián)進一只檢測電阻器將是不實際的。同樣,由于地并非良導(dǎo)體,系統(tǒng)中不同點的接地電壓會不一致,從而在精密測量中需要采用一個差分放大器(圖3B)。
圖3A:低端電流檢測拓撲。 [page]
圖3B:低端電流檢測電路實現(xiàn)。
當(dāng)實現(xiàn)低端電流檢測時有一個非常嚴(yán)重的問題。在接地路徑中采用一只電阻器,意味著負載的地電位隨著電流的變化而變化。這將引起系統(tǒng)的共模誤差,并在與要求相同地電位的其他系統(tǒng)連接時出現(xiàn)問題。因為VSENSE的幅度將影響分辨率,設(shè)計師需要在分辨率和接地噪聲方面進行權(quán)衡。100mV的VSENSE滿量程將轉(zhuǎn)換成100mV的注入接地噪聲。但是,可以通過將電流檢測電阻器置于電源和負載之間來避免出現(xiàn)上述地電平的變化問題。
這種替代方案被稱作為高端電流檢測。同樣,位于檢測電阻兩端的差分電壓提供了直接的電流測量,但在電阻器的兩端存在一個非零的共模電壓。因此該電路也提出了技術(shù)挑戰(zhàn),即必須將微小的差分檢測電壓與來自電源的共模電壓區(qū)分開來(圖4)。
圖4:高端電流檢測。
對于低壓系統(tǒng),儀表放大器或軌到軌差分放大器足以用來實現(xiàn)高端檢測電阻器的檢測。放大器的輸出必須轉(zhuǎn)換到地,且不能增加太大的誤差。而到電源電壓非常高時,就需要采用電路將VSENSE降低到放大器的共模范圍內(nèi),或者將放大器懸浮到電源電壓上。這樣,除了增大電路板空間和成本外,該技術(shù)還假定了共模電壓必須位于一個很小的規(guī)定范圍內(nèi)。對于絕大多數(shù)的電流檢測應(yīng)用,能夠預(yù)測大的共模波動是非常有用的。例如,如果在電源電壓下降時電流檢測電路仍能工作的話,就可以指示出究竟是電源還是負載出現(xiàn)了問題,電流過大時意味著限流機制或負載發(fā)生了故障,反之,過小時則說明是電源的故障。另一方面,電流檢測電路可能面對超過電源電壓的共模電壓。許多電流型器件,例如電機和螺線管,都呈感性,流通電流的快速變化會引起電感性回掃,從而在檢測電阻器上產(chǎn)生大的電壓擺幅。也正是在這些情況下放大器顯得最有用1。
簡單方案
為了解決電流檢測的技術(shù)挑戰(zhàn),出現(xiàn)了高端電流檢測放大器。這些特殊的放大器能夠從高共模電壓中提取由流經(jīng)小檢測電阻的電流產(chǎn)生的低差分電壓。該檢測電壓然后被放大并被轉(zhuǎn)換成以地為基準(zhǔn)的信號。圖5給出了高端電流檢測放大器的基本拓撲結(jié)構(gòu)。在這種情況下,放大器將一個等效于VSENSE的電壓強加到RIN上。通過RIN的電流被迫通過ROUT,從而產(chǎn)生一個以地為基準(zhǔn)的電壓。 很顯然,對于基本的高端電流檢測放大器來說,要求具有高輸入阻抗,具有高精度的高增益,具有良好共模抑制性能的寬共模范圍。還有一點不太明顯的是放大器的精度也很重要。 [page]
圖5:基本的高端電流檢測放大器。
1對于開關(guān)或整流型負載,在開關(guān)和負載之間安置一個傳感電阻器將會在放大器端引起一個較大的、且頻率可能很高的共模電壓。即便是放大器具有很高的共模抑制能力,當(dāng)出現(xiàn)很大的高頻共模電壓時,也會導(dǎo)致CMRR誤差。為了避免這一不必要的難題,傳感電阻器應(yīng)該對著電源放置,以免受到整流電壓的影響。
阻抗是關(guān)鍵
理想情況下,電流和電壓檢測都不應(yīng)影響所連接的負載。這意味著電壓檢測器件應(yīng)該具有近似無窮大的輸入阻抗,這樣才能確保對負載沒有明顯的分流。相反,電流檢測應(yīng)該具有近似為零的輸入阻抗,這樣才能確保加到負載上的電壓不會明顯降低。高端電流檢測電路(放大器+電阻器)應(yīng)滿足這兩項要求。用來檢測RSENSE上電壓的放大器必須具有高輸入阻抗,而用來檢測負載電流的電阻則必須非常小。
為了進一步證明這一點,可以嘗試使用大檢測電阻。隨著串聯(lián)電阻的增加,負載上的電壓下降。外部串聯(lián)的電阻是消耗能量的原因,過大的檢測電阻還會導(dǎo)致過度的熱耗散,從而引起長期的可靠性問題。
那么,是否有任何理由來使用大電阻呢?使用大電阻的主要優(yōu)點是增加總的輸出電壓(等式1)。這在放大器的增益固定或增益可配置能力有限時是有用的。
對檢測電阻的大小有一個限制。放大器的輸入范圍和最大期望電流將決定最大的可用檢測電阻(等式2)。
例如,如果通過檢測電阻的最大電流(ISENSE_MAX)預(yù)期為50mA,而高端電流檢測放大器所能接收的最大輸入電壓為250mV(VSENSE_MAX),則最大檢測電阻為5ohms (RSENSE_MAX)。
理論上,不應(yīng)該強迫設(shè)計師通過增加檢測電阻來補償放大器。只要放大器能夠以足夠的增益和精度工作,設(shè)計師就應(yīng)該使用最小可接受的檢測電阻。這可以根據(jù)電流檢測放大器的輸入偏置電壓和必須處理的最小電流來計算。
例如,如果需要1mA的分辨率(IRES),而高端電流檢測放大器的偏置電壓是1mV (VOFFSET),最大檢測電阻則應(yīng)為1ohm (RSENSE_MIN)。方程3強調(diào)了一個關(guān)鍵點,即最小檢測電阻直接與高端電流檢測放大器的偏置電壓有關(guān)。
密切關(guān)注先進的電流檢測放大器
由于具有高端電流檢測的精度,新一代高端電流檢測放大器的性能相對于上一代有了顯著的改善。例如,凌力爾特科技公司的LTC6102就是一款結(jié)合了零漂移技術(shù)的最新高端電流檢測放大器。該放大器的輸入偏置電壓只有10μV,最大偏置漂移只有50nV/℃。與上一代的電流檢測放大器相比,LTC6102可以使用更小的檢測電阻2。如果系統(tǒng)能夠允許更大的VSENSE, LTC6102可以接收高達2V的檢測電壓。這種組合偏置加上這一最大檢測電壓可以使放大器提供106dB的動態(tài)范圍,從而能夠處理來自電流放大器的微安級電流。用它可以檢測更小的電流,因為可以利用外部電阻達到任意的增益值。通過利用精密電阻器,增益精度可以優(yōu)于99%。
圖6:凌力爾特科技公司LTC6102可以直接實現(xiàn)高端電流檢測。配置該器件只需一個RSENSE和兩個增益電阻器。設(shè)計師可以通過選擇RIN和 ROUT來定制功耗、響應(yīng)時間以及輸入/輸出阻抗特性。[page]
LTC6102也并不犧牲其他重要的電流檢測功能。高輸入阻抗將輸入偏置電流限制在300pA以下。LTC6102在高達105V的共模輸入電壓條件下仍能工作。共模抑制達到130dB,在100V的共模輸入電壓范圍內(nèi)所貢獻的偏差小于32 uV3。在故障保護方面,該器件的響應(yīng)時間為1usec,因此在負載或電源發(fā)生意外時能夠迅速地關(guān)斷電源。
2與具有1mV偏置電壓和1 uV/℃漂移的典型高端電流檢測放大器相比,LTC6102具有最小的理論檢測電阻值(RSENSE_MIN, 等式3),對于任何給定的電流分辨率(IRES) 而言都要小99%。
3共模抑制等于20 * Log [VCM / VOS]。
本文小結(jié)
高端電流檢測放大器為檢測和控制電流提供了諸多內(nèi)在的優(yōu)勢。先進的電池管理和電機控制技術(shù)就是很好的一些實際應(yīng)用案例,它們對具有更高共模電壓、更高準(zhǔn)確度和更高精度的電流檢測放大器提出迫切需求。業(yè)界領(lǐng)先的LTC6102由于具有強大的功能和出色的精度而得到了業(yè)界的青睞。目前的高端電流檢測放大器已經(jīng)達到了業(yè)界領(lǐng)先精度的運算放大器的性能水平,為設(shè)計師提供了一個簡單、多功能和高精度的選擇,可以完全替代過去精度低而且復(fù)雜的電流檢測電路。